Space variant ultrasound frequency compounding based on noise characteristics.

نویسندگان

  • Yael Erez
  • Yoav Y Schechner
  • Dan Adam
چکیده

Ultrasound images are very noisy. Along with system noise, a significant noise source is the speckle phenomenon caused by interference in the viewed object. Most of the past approaches for denoising ultrasound images essentially blur the image and they do not handle attenuation. We discuss an approach that does not blur the image and handles attenuation. It is based on frequency compounding, in which images of the same object are acquired in different acoustic frequencies and, then, compounded. Existing frequency compounding methods have been based on simple averaging, and have achieved only limited enhancement. The reason is that the statistical and physical characteristics of the signal and noise vary with depth, and the noise is correlated between acoustic frequencies. Hence, we suggest two spatially varying frequency compounding methods, based on the understanding of these characteristics. As demonstrated in experiments, the proposed approaches suppress various noise sources and also recover attenuated objects while maintaining a high resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasound Image Denoising by Spatially Varying Frequency Compounding

Ultrasound images are very noisy. Along with system noise, a significant noise source is the speckle phenomenon, caused by interference in the viewed object. Most past approaches for denoising ultrasound images essentially blur the image, and they do not handle attenuation. Our approach, on the contrary, does not blur the image and does handle attenuation. Our denoising approach is based on fre...

متن کامل

Frequency Smoothed Robust Capon Beamformer Applied to Medical Ultrasound Imaging

Recently, adaptive array beamforming has been applied to medical ultrasound imaging and achieved promising performance improvement. However, the current robust Capon beamformer with spatial smoothing (RCB-SS) is implemented in the time domain, which does not fully utilise the large bandwidth of ultrasound signals and spatial smoothing reduces the effective aperture. In this dissertation, we pro...

متن کامل

Temporal compounding: a novel implementation and its impact on quality and diagnostic value in echocardiography.

Temporal compounding can be used to suppress acoustic noise in transthoracic cardiac ultrasound by spatially averaging partially decorrelated images acquired over consecutive cardiac cycles. However, the reliable spatial and temporal alignment of the corresponding frames in consecutive cardiac cycles is vital for effective implementation of temporal compounding. This study introduces a novel, e...

متن کامل

Spatial-angular compounding for elastography using beam steering on linear array transducers.

Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Under this method, compounded elastograms are obtained from a spatially weighted average of local strain estimated from radio frequency (rf) echo signals acquired at different insonification angles. In previous work, the acquisition of the rf signals was performed through the...

متن کامل

Spatial Angular Compounding of Photoacoustic Images

Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 34 6  شماره 

صفحات  -

تاریخ انتشار 2008